wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Clustering Techniques

profile
Priya Nichit
Aug 23, 2024
0 Likes
1 Discussions
99 Reads

Clustering ek technique hai jo data ko groups mein divide krte hai, jise clusters kehte hain. Ye groups similar items ko ek saath rakhte hain. Matlab, jo data points ek jese hai, unko ek cluster mei daal diya jata hai. Yeh unsupervised learning ka part hota hai, matlab yeh technique bina labeled data ke kaam karti hai.


Structure: Clustering ka structure simple hai. First, data ko analyze karte hain then uske basis pe clusters banate hai. Yeh clusters data ke similarity ya density ke base pe bante hai. Hierarchical clustering mein clusters ko tree-like structure mein arrange karte hai, jise dendrogram kehte hai. Partitioning clustering mein data ko pre-defined clusters mein break kiya jata hai.



Techniques:


K-Means Clustering:

Yeh ek popular partitioning technique hai jisme data points ko predefined "k" clusters mein divide kiya jata hai. Har cluster ka ek centroid hota hai, aur data points ko unke nearest centroid ke according cluster mein assign kiya jata hai. Yeh iterative process hota hai jo tab tak chalta hai jab tak clusters stable na ho jayein.


Steps:

  • Select k number of clusters.
  • Randomly initialize centroids.
  • Har data point ko uske closest centroid ke according assign karein.
  • Recompute centroids based on new cluster memberships.
  • Process ko repeat karein until no changes occur.

·      


 Hierarchical Clustering: 

Yeh technique data ko layers mein divide karti hai, ek tree-like structure banati hai jise dendrogram kehte hain. Do tarike hote hain:

1.    Agglomerative Clustering (Bottom-up): Pehle har data point ko apna ek cluster banaya jata hai, aur phir close clusters ko merge karte jate hain.

2.    Divisive Clustering (Top-down): Sabse pehle ek single cluster banate hain jo poore data ko represent karta hai, phir isse smaller clusters mein divide karte hain.


Steps:

  •   Start with all data points as individual clusters.
  •   Merge the closest clusters.
  •   Repeat until one large cluster is formed.

 


Density-Based Clustering: 

Ismein clusters un regions mein bante hain jahan data points ki density zyada hoti hai. Is technique ka fayda yeh hai ki yeh noise ya outliers ko ignore kar sakti hai, jo large aur scattered data ke liye ideal hota hai.


Steps:

  1. For each data point, check how many neighbors fall within a specific distance (eps).
  2. If enough neighbors are found, it's considered a core point, and a cluster is formed.
  3. Points within the distance are added to the cluster; noise points are left unclustered.


Advantages: Its irregular shapes ke clusters ko handle karne mein kaafi effective hoti hai, unlike K-Means jo spherical clusters ko prefer karta hai.

 


Gaussian Mixture Models (GMM): 

Yeh probabilistic model use karta hai, jisme data ko multiple Gaussian distributions ke mix ke roop mein model kiya jata hai. Har data point ko uss cluster mein assign kiya jata hai jisme uska probability score highest hota hai. Yeh technique tab useful hoti hai jab clusters overlap karte ho ya jab data ko soft clustering (jahan ek data point multiple clusters mein belong kar sakta hai) ke through model karna ho.


Steps:

  • Assume the data follows multiple Gaussian distributions.
  • Calculate the probability of each data point belonging to a particular distribution.
  • Assign the point to the cluster with the highest probability.


 Advantages: Overlapping clusters ko identify karna ho toh GMM zyada effective hota hai, jab K-Means fail hota hai.  



Advantages:

  • Clustering se humein data ke hidden patterns pata chal jata hai.
  • Yeh data ko easily analyze aur visualize karne mein help karta hai.
  • Clustering customer segmentation jaise practical tasks mein kaam aata hai.
  • Yeh large datasets ko simplify karne mein madad karta hai, jisse analysis fast aur accurate hota hai.



Disadvantages:

  • Kahi baar clusters ki exact number decide karna difficult hota hai.
  • K-Means clustering complex data shapes ke liye not much effective.
  • Density Based ko high-dimensional data mein problem hoti hai.
  • Model-based clustering jese GMM mein accurate results ke liye zyada computing power chahiye hoti hai.



Applications:

  • Customer Segmentation: Customers ko unke behavior ke basis pe groups mein divide karte hain, So marketing campaigns ko target kar sakein.
  • Image Segmentation: Images ko parts mein divide karte hain taaki specific objects ya patterns ko identify kar sake.
  • Document Classification: Documents ko topics ke hisaab se classify karte hain.
  • Anomaly Detection: Ajeeb data points ya outliers ko detect karte hain, jo fraud detection mein madad karta hai.


Conclusion: Clustering ek powerful tool hai data analysis ke liye. Yeh alag-alag techniques use karke data ke hidden insights search krne mein madad karta hai. Har technique ka apna ek unique approach hota hai, aur data ki nature ke hisaab se best technique choose karna chahiye. Like K-Means large datasets ke liye acha hai, density base noisy datasets ke liye aur GMM jab data ko distributions mein fit karna ho. Isliye, clustering techniques ko samajhna aur sahi way se apply karna data science mein bohot important hai.


Comments ()


Sign in

Read Next

Social Media Marketing Trends 2022

Blog banner

Latest Email Marketing Techniques

Blog banner

TOGETHER WE CAN CONQUER #team

Blog banner

CYBERPEACEKEEPING: NEW WAYS TO PREVENT AND MANAGE CYBERATTACKS

Blog banner

Types of Threads

Blog banner

File management -disha parekh

Blog banner

Expert System In AI

Blog banner

Brain wash of social media

Blog banner

Smartphone Security: Vulnerabilities and Attacks

Blog banner

Types of Hackers

Blog banner

What is semaphore in operating system?

Blog banner

The functions of operating system

Blog banner

Full Disk Encryption

Blog banner

QUANTUM COMPUTING IN SECURITY:A GAME CHANGER IN DIGITAL WORLD

Blog banner

Data Warehouse Bus Matrix

Blog banner

Health and fitness

Blog banner

Go Daddy

Blog banner

Components of GIS

Blog banner

Making Money through Instagram

Blog banner

Importance Of Blockchain

Blog banner

BrainGate Technology

Blog banner

Question

Blog banner

Memory Management

Blog banner

EVOLUTION OF MICROPROCESSOR

Blog banner

AI & Data Science in Healthcare – Predicting diseases, medical imaging analysis

Blog banner

10 Problems you face if you are an Otaku

Blog banner

Cybersecurity Standards for Automotive

Blog banner

BUFFER OVERFLOW_142

Blog banner

Amazon

Blog banner

differentiate thinking humanly and rationally

Blog banner

Elements and Principles of Photography

Blog banner

Fun Christmas Activities For Toddlers & Kids

Blog banner

Deadlock and Starvation

Blog banner

Image Steganography: Hiding Secrets in Plain Sight

Blog banner

Kernel Modes: User Mode vs. Kernel Mode - 80

Blog banner

Rapido

Blog banner

Developments in Modern Operating Systems

Blog banner

ART AND CULTURE OF VRINDAVAN

Blog banner

Modern operating system

Blog banner

Bitcoin sent using radio waves! No internet!

Blog banner

Bulk E-mail software

Blog banner

operating system

Blog banner