wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Understanding Regression Analysis

profile
isha Dangare
Oct 15, 2024
2 Likes
0 Discussions
166 Reads

Introduction


Regression analysis is a powerful statistical method that helps us understand relationships between variables and make predictions based on data. 


Yeh dependent variable aur ek ya zyada independent variables ke beech ka relationship model karta hai, jo decision-making mein valuable insights de sakta hai.


Regression Analysis :


The main goal of regression analysis is to establish a mathematical relationship. 

Dependent variable woh hota hai jise hum predict ya explain karna chahte hain, jabki independent variable(s) woh factors hain jo dependent variable ko influence karte hain. 

Ek tarah se dekha jaye, regression analysis ek tool hai jo humein data ke patterns samajhne mein madad karta hai.


Regression Analysis types:


Regression analysis ke kai types hain, har ek alag data aur relationships ke liye suited hai.


1.Linear Regression


  • Linear regression is the most straightforward form. It assumes a linear relationship between the dependent variable and independent variable(s). 
  • Simple Linear Regression ek independent variable ka istemal karta hai, jaise ek student ke exam score ko hours studied ke basis par predict karna.
  • Multiple Linear Regression zyada independent variables ko include karta hai, jaise house prices ko square footage, bedrooms, aur age ke basis par predict karna.Is tarah se, hum zyada complex relationships ko bhi samajh sakte hain.


2.Logistic Regression


Logistic regression tab use hota hai jab dependent variable categorical ho, aksar binary.Jaise agar humein predict karna ho ki koi customer product purchase karega ya nahi based on income aur age.Agar model probability 0.8 predict karta hai, iska matlab hai ki customer ke purchase karne ka 80% chance hai.Iska matlab agar humare paas sahi data hai, toh hum acche predictions kar sakte hain.


3.Polynomial Regression


Jab variables ke beech relationship linear nahi hota, tab polynomial regression use hota hai.Jaise agar humein temperature aur ice cream sales ke beech relationship model karna ho, jo linear nahi hai.Yeh un situations mein kaam aata hai jahan linear relationship nahi hota.


4.Ridge Regression


Ridge regression un situations mein use hota hai jahan multicollinearity hoti hai, matlab independent variables highly correlated hote hain.Jaise agar hum student performance ko study time, attendance, aur class participation ke basis par predict karte hain.Yeh humein stable predictions dene mein madad karta hai jab variables correlated hote hain.


5.Lasso Regression


Lasso regression bhi ridge regression ki tarah hai, lekin yeh coefficients ke absolute values par focus karta hai.Jaise house prices ko predict karne ke liye Lasso model kuch coefficients ko zero bana sakta hai.Is tarah se hum model ko simplify kar sakte hain aur sirf zaroori features ko rakh sakte hain.


6.Elastic Net Regression


Elastic Net regression ridge aur lasso regression dono ke strengths ko combine karta hai.Yeh un situations mein useful hai jab multiple features correlated hote hain.Is approach se hum variable selection aur stabilization dono kar sakte hain, jo regression analysis ko versatile banata hai.


7.Stepwise Regression


Stepwise regression ek method hai jahan predictive variables ka selection automatic procedure se hota hai.Forward selection ya backward elimination ke through yeh kiya ja sakta hai.Yeh process humein sabse significant predictors identify karne mein madad karta hai, jo model interpretability ko improve karta hai.


Applications of Regression Analysis


Regression analysis ka istemal kai fields mein hota hai:


Economics: Understanding the relationship between income levels and consumer spending.


Healthcare: Predicting patient outcomes based on treatment variables and demographic factors.


Marketing: Evaluating the impact of advertising on sales and customer engagement.


Finance: Assessing risks and returns based on multiple financial indicators.


Comments ()


Sign in

Read Next

Smart Homes | Zigbee Alliance

Blog banner

Artificial Intelligence (AI)

Blog banner

15 Websites that will make your life easier ...!!!

Blog banner

"Life as a Part-time Student"

Blog banner

CRISP-DM Methodology

Blog banner

Strengthening Active Directory Security

Blog banner

The Secure Software Development Life Cycle (SDLC)

Blog banner

Self-love: Being the reason of your own smile

Blog banner

Introduction to Virtual Memory - 080

Blog banner

social media issue

Blog banner

Working with Sniffers for monitoring network communication

Blog banner

The Future of Cybersecurity: Trends, Challenges, and Strategies

Blog banner

Consumer to consumer Business model

Blog banner

Sessions In OS.

Blog banner

How Does SSO Works

Blog banner

rupee

Blog banner

ProofHub

Blog banner

RACI model in IT services

Blog banner

JIRA SOFTWARE

Blog banner

Studying Denial of service attack using DOSHTTP tool

Blog banner

The House ??of Patola Designs: Traditional Weaves with a Modern Twist

Blog banner

Stop Racism

Blog banner

Big Data Architecture

Blog banner

Dudhasagar waterfall ?

Blog banner

Memory Management

Blog banner

Tiranga - Abbas Haveliwala

Blog banner

OS assignment 3

Blog banner

Platonic Solids

Blog banner

Computer Forensics and its Impact in Business Environment

Blog banner

Product Discount Calculator

Blog banner

Threat management

Blog banner

Raid

Blog banner

Microsoft Windows Overview

Blog banner

The Rich Heritage Of Patola Sarees: Gujarat’s Timeless Weaving Art

Blog banner

DMZ: Your Secret Weapon for Data Security

Blog banner

FRIENDSHIP

Blog banner

Secure Hypertext transfer protocol

Blog banner

I/O Buffering

Blog banner

Virtual Machine

Blog banner

SQL Injection

Blog banner

Security issues

Blog banner

Data Warehouse Bus Matrix

Blog banner