wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Decision Tree: A Diagram Model

profile
Yash Masurekar
Aug 21, 2024
1 Like
4 Discussions
180 Reads

"𝐃𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐓𝐫𝐞𝐞"


Yeh ek flowchart-jaisa diagram h jisse hume predictions lene main aasani hoti h. Yeh model ek machine learning ka technique h jo hamare decisions ko visualize karne main madad karta h. Aur aam taur par isse classification aaur regression tasks ke liye bhi istamaal kiya jaata h.


Structure


Agar hum isse aaur deep jaakar samjhe, toh mainly ismein 4 cheezein hoti h:


1. Nodes: ismein cases aaur tests ko darshaya jaata h.

2. Branches: yeh nodes k parinaamo ko represent karte h.

3. Leaf Node: antim ya final predictions ko represent karta h.

4. Internal Node: har branch tests ke parinaam isme darshaye jaate h.

Iss tarah se, har node ek decision point h, aur leaf node final decision ko represent karta h.


Working


Decision Tree ko kuch iss prakaar banaya jaata h:


1. Data Split karna: Sabse pehle root node par, data ko uske sabse best attribute se aage divide kiya jaata h.

2. Best Split Choose karna: Tree algorithm har seperation pe yeh check karta h ki konsa split data ko best separate karta hai. Isme hum Gini impurity, entropy, aaur information gain jaise metrics istamaal karte h.

3. Sub-Trees banane: Split ke baad, yeh prakriya har resulting subset ke liye repeat hota h, tab tak jab tak hum ek clear decision par na pohoch jaaye ya data ko aage split na kar paaye.

4. Pruning(optional): Tree kabhi-kabhi overfit ho jaata h, yaane complex ho jaata h. Yeh tree training data ke liye tho perfect kaam karta h, leekin naye data ke liye nahi. Pruning technique istamaal karke hum unnecessary branches ko nikaal sakte h taaki tree simple, clean aaur generalize rahe.


How Decision Trees handle Missing Data


hamare iss tree main ek aaur feature h jaha hum incomplete ya missing data ko bhi handle kar sakte h. Kabhi kabhi admin information dene bhool jaate h/ nahi de paate h, jaise kisi state ke temperature ka value na hon ya students dataset main unka marks unfilled rehna ityadi. iss concept ki madat se hum missing data ke values ko bhi predict kar sakte h. Aam taur par, estimation ko dhyan main rakh kar fillups karte h, ya decision-making prakriya ke waqt un nodes ko skip kar diya jaat h, jaha data unavailable h. Iss puure prakriya ko hum "imputation" bhi kehte h, jo missing data ke impact ko significantly reduce kar deta h.


Random Forests ka Concept


Agar hum decision tree k aage badhe tho hum "Random Forests" ke baare main malum padta h. Iss concept ya diagram ke ander hum

multiple decision trees ka use karke predictions ya classification karte h. Isse ek anokha fayda milta h, jab ek specific tree se hum prediction milta h tho vo bias bhi ho sakta h, par jab hum multiple trees yaane forests ko milke accumulate karte h tab uski accuracy bahut jyada improve ho jaati h. Iss technique ke ander har ek tree ko slightly different dataset diya jaata h, aaur inn sabka combined output ek better aaur impactful prediction deta h. Yeh approach kai mayne main robust sabit hua h, aaur overfitting ke chances bhi kaafi low h, kyuki individual trees ke bias combine hone par neutralize ho jaata h.


Decision Trees are explainable 


Sabse badi baat iss topic ke ander yeh hai ki Decision Trees kaafi saral bhasha main samjhaye jaa sakte h. Machine Learning aaur AI field main transparency kaafi zaruuri h, aaur ye diagram iss baat ko kaafi sehjataa e support karta h. Jab hum kisi decision tree ka diagram dekhte h, tho easily hame samaj aa sakta h ki kis attribute ya condition par kaunsa decision/inference liya gaya h. Yeh explainability kaafi useful saabit hoti h jab hume models ko stakeholders ya non-technical audiences ko samjhana ho. Is Tarah, Decision Trees ka model sirf accurate predictions nahi, balki ek clear explanation bhi provide karta h, jo real-world deployment main kaafi important role play karta h.


Advantages of Decision Tree


> Simple aaur Samajhne main Aasan: Yeh diagram technique easily visualize hoti h, aaur business mindset se bhi samajh sakte h.

> Less Data Preparation: Isse implement karne ke liye jyada data prepare karne ki jarurat nahi h, jaise normalization yaa scaling.

> Numerical aaur Categorical Data, dono data ke types ke saath kaam kar sakte h.


Disadvantages of Decision Tree


> Overfitting: Agar Decision Tree jyada complex ho jaaye tho vaha manage kar sakta h par accurate results dene ki sambhavnaaye    kam h.

> Bias towards Dominant Classes: Agar classes imbalanced h, tho vaha dominant class ki taraf biased ho sakta h.



Applications


Example ke taur par samjhiye, agar muje decide karna h ki iss weekend pe beach jaana chahiye ya nahi. Toh yaha main temperature, weather, baarish etc ko consideration main lena chahunga. Yeh sab variables mere decision tree ke root aaur internal nodes banenge, aaur leaf nodes mera final decision represent karega, jaise "Let's Go Beach!" ya "Stay Home".


Aakhir main, "Decision Tree" ek powerful aaur diagram-based tool h jo decision-making ko simple aaur logical manner main organize karta h. "Business Planning" main yeh kaafi use hota h aaur "Medical" main disease diagnosis, usse sambandhit treatment plans batane main iska bahumulya yogdaan h. Yeh real-world problems ke liye kaafi upyogi ho sakta h, leekin kuch cheezein yaad rakhni jaruri h. Sabse ahem toh yeh h ki proper pruning bahot jaruri h taaki hamara model generalize, clean aaur overfit na ho.


Future of Decision Trees in AI


Aajkal ke fast evolving waqt main, Decision Trees ko AI aaur machine learning models main bhi integrate kiyaa jaa raha hai taaki algorithms smarter aaur efficient ban sake. Self-driving card, home automation, home assistants jaisi automated systems

decision trees ka use karke customer preferences ya situation ke basis pe decisions lete h. Ek example ke taur par, hume ek e-commerce website recommend kar sakti h ki hume kaunsi product kharidni chahiye based on hamare previous purchases. Isse hum yeh malum padta h ki sab AI aur Decision Tree models ka combined effect h, jisse daily life bahut hi aasan/convenient ho gayi h. Leekin aage jaane ke liye, pruning aaur algorithm improvements bahut hi jyada zaruri hai taaki trees hamare complex aur dynamic data ko handle kar paaye.


Comments ()


Sign in

Read Next

Uniprocessor Scheduling

Blog banner

Craziness of dream 11 and how it impacts on our life

Blog banner

GUIDE TO GIS

Blog banner

MIDDLE CLASS MELODIES!!

Blog banner

Child labour

Blog banner

Modern Operating Systems.

Blog banner

Introduction to GIS

Blog banner

Different types of scam frauds

Blog banner

Introduction to Data Science: Life Cycle & Applications

Blog banner

MEMORY MANAGEMENT

Blog banner

Juveniles, Internet and Computer Crime

Blog banner

What is process

Blog banner

The Power of Forensic Watermarking in the Fight Against Content Piracy

Blog banner

Asana

Blog banner

Deadlock

Blog banner

Article on Team Work

Blog banner

CYBER SECURITY CHALLENGES

Blog banner

MY MOST THRILLED TREK ..... BHAIRAVGAD

Blog banner

semaphores in os

Blog banner

GIS in Mapping and landslide alert in Bangladesh

Blog banner

Types of Hackers

Blog banner

Why You Should Not Use Free VPNs

Blog banner

Microsoft Windows Overview

Blog banner

Odoo

Blog banner

Linux Threads:

Blog banner

Deadlock and Starvation

Blog banner

Malware

Blog banner

A-B-C of Networking: Part-1 (Basics)

Blog banner

Deadlock in Operating System

Blog banner

Efficiency of SQL Injection Method in Preventing E-Mail Hacking

Blog banner

AOL Mail

Blog banner

Software

Blog banner

Operating system

Blog banner

Procedure For Corporate High-Tech Investigations

Blog banner

Sensory Play for Toddlers: Boosting Curiosity Through Touch, Sound, and Colour

Blog banner

Every body is beautiful

Blog banner

Topic: Sessions in Operating system

Blog banner

Rules and Regulations of Networking: "Standards and Protocols" - Part 1

Blog banner

FREE VERSION OF G-MAIL

Blog banner

MODERN OPERATING SYSTEM

Blog banner

Virtual Machine

Blog banner

Jira Software

Blog banner